

LOW LOSS FLEXIBLE HELIX WAVEGUIDE

T. Hayakawa I. Takashima K. Inada
 Telecommunication Cable Research and Development Department
 The Fujikura Cable Works, Ltd.
 Sakura-Shi, Chiba-Ken, 285 Japan

M. Miyauchi
 The Ibaraki Electrical Communication Laboratory
 Nippon Telegraph and Telephone Public Corporation
 Tokai, Ibaraki-Ken, 319-11 Japan

ABSTRACT

We have found the optimum wall structure of small inner diameter flexible helix waveguides which scarcely cause TE₀₁ mode conversion despite a bending or elliptical deformations. TE₀₁ mode loss is below 0.25dB for a wide millimeter wave range. The attenuation is lower than that of a single corner waveguide which has been generally used at the severe curved segment of waveguide line. Moreover, there is no generation of unwanted higher order TE_{0n} modes. These low loss flexible helix waveguides will be useful for the wide frequency range of the millimetric waveguide communication systems.

Introduction

In order to realize the millimetric waveguide communication systems in Japan, it is necessary for the waveguide line to have many severe curved sections. Though we are able to construct severe curved segments using corner waveguides with sufficient mechanical strength, they cause higher order unwanted TE_{0n} modes which damage the transmission characteristics of the waveguides. 1

We have found that small inner diameter flexible helix waveguides can be used to construct a curved segment with low loss by achieving a smooth bend of the waveguide axis. For the first time, a measurement method of wall impedance was studied, and the optimum wall structure for low loss flexible helix waveguides which scarcely cause any mode conversion loss even by a curvature and an elliptical deformation was obtained.

Among the good properties are;

1. Attenuation of TE₀₁ mode is low compared with the corner waveguide which is used in a curved segment.
2. There is no generation of unwanted higher order TE_{0n} modes.
3. It is possible to use the flexible helix waveguide with complex curvature.

Theoretical Analysis

Wall Impedance

In a circular waveguide, mode coupling between TE₀₁ and another mode is caused by curvature or elliptical deformation of the waveguide. In the following section, we call every mode except TE_{0n} (n=1, 2, 3, ...) "i" modes.

The structure of the flexible helix waveguide is shown in Figure 1-(a). The wall structure is resembled to the conventional helix waveguides. It is composed of spaced wound helix wire, low loss dielectric layer by fiber reinforced plastics (F.R.P.), electro magnetic shield by metal and reinforcement layer by F.R.P..

These mode couplings are changed by the axial wall impedance of the flexible helix waveguide. The relation between axial wall impedance "Z_z" and cut off wave number "χ_i" is given by the following characteristic equation of helix waveguide. 2

$$j\omega\epsilon aZ_z - \frac{\chi_i J_p(\chi_i) J_p'(\chi_i)}{\frac{p^2}{\chi_i^2} \frac{\gamma_i^2}{k^2} J_p^2(\chi_i) + J_p^2(\chi_i)} = 0 \quad (1)$$

$$(\chi_i/a)^2 = k^2 + \gamma_i^2, \quad k^2 = \omega^2 \mu \epsilon \quad (2)$$

where "ω" is the angular frequency, "μ", "ε" are the permeability and permittivity of the waveguide interior, "γ_i" is the propagation constant and "J_p(χ_i)" is the Bessel function of the first kind. When the matching layer "t" of the figure has no loss, the propagation constant is purely imaginary, and characteristic equation is solved easily.

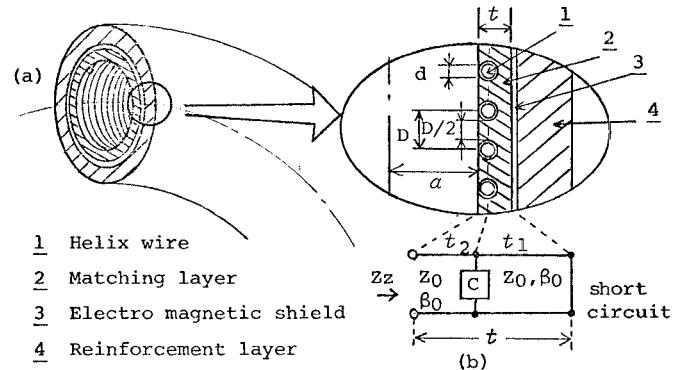


Figure 1. Wall structure of flexible helix waveguide and equivalent circuit of wall impedance.

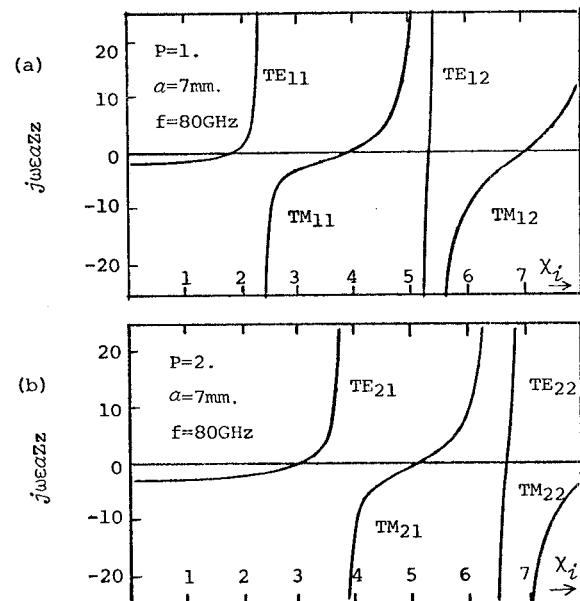


Figure 2. Relation between "jωεaZz" versus "χ_i" where P=1. and P=2., waveguide radius "a" is 7mm, and frequency "f" is 80GHz.

Figure 2-(a) shows the relation between " $j\omega\epsilon_{aZZ}$ " and " χ_z " in the case of the curved helix waveguide. (p=1) Figure 2-(b) shows the relation between " $j\omega\epsilon_{aZZ}$ " and " χ_z " in the case of elliptical deformed helix waveguide. (p=2)

The axial wall impedance of a helix waveguide is a function of the capacitance of the helix wire and the impedance of the matching layer. The total thickness of matching layer "t" is composed of the amount of "t₁" and "t₂". The equivalent circuit of the axial wall impedance of the flexible helix waveguide is shown in Figure 1-(b), and the value is calculated by;

$$zz=jz_0 \frac{Z_0\omega C \sin(\beta_0 t_1) \sin(\beta_0 t_2) - \sin\beta_0(t_1+t_2)}{Z_0\omega C \sin(\beta_0 t_1) \cos(\beta_0 t_2) - \cos\beta_0(t_1+t_2)} \quad (3)$$

$$\text{with } C/\text{square} = \epsilon_0 \epsilon_s d \left(\frac{d}{D-d} - \frac{\ln 4}{\pi} \right)^{3/2} \quad (4)$$

$$\beta_0 = \omega \sqrt{\mu \epsilon \epsilon_s - 1}, \quad Z_0 = \sqrt{\mu / \epsilon \epsilon_s - 1} / \epsilon_s$$

$$t = t_1 + t_2$$

The value of " $j\omega\epsilon_{aZZ}$ " is calculated as in Figure 3 where waveguide radius "a" is 7mm., diameter of the helix conductor "d" is 0.12mm., wound pitch of the helix wire "D" is 0.3mm., permittivity of matching layer " ϵ_s " is 4 and thickness of matching layer "t" as a parameter.

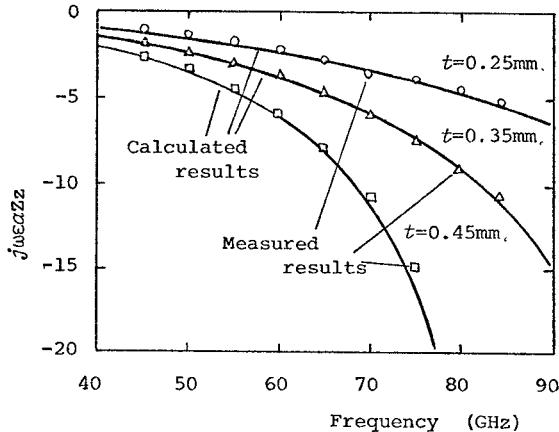


Figure 3. Calculated and measured results of " $j\omega\epsilon_{aZZ}$ " versus frequency where "a" is 7mm., "d" is 0.12mm., "D" is 0.3mm., " ϵ_s " is 4 and thickness of matching layer as a parameter.

Mode Conversion Loss

In the case of a uniform bend radius "R" and an elliptical deformation " δ ", the mode conversion loss $\Gamma_i(l)$ by these deformation is obtained from equation 5.

$$\Gamma_i(l) = \left[\left(\frac{C_i}{\Delta\beta} \right)^2 \{ \Delta\alpha l + 1 - \exp(-\Delta\alpha l) \cos(\Delta\beta l) \} \right]^4. \quad (5)$$

Where " C_i " is the coupling coefficient between TE₀₁ and "i" mode, "l" is the length of curvature section, $\Delta\alpha$ and $\Delta\beta$ are the differences of attenuation and phase constant between TE₀₁ and "i" mode respectively. From equation 5, it is clear that mode conversion loss for TE₀₁ proportional to $(1/\Delta\beta)^2$. In order to reduce $\Gamma_i(l)$, therefore, $(C_i/\Delta\beta)^2$ and $\Delta\alpha$ must be reduced, and it is generally desirable to make $\Delta\beta$ increase. Typical calculated results of $\Gamma_i(l)$ is shown in Figure 4.

The closer the wall impedance reaches to the metallic wall, the larger the mode coupling between TE₀₁ and TM₁₁ mode. Conversely, the further the wall impedance separates from the metallic wall, the larger the mode couplings between TE₀₁ and elliptical TE₂₁ and TM₂₁ mode. Therefore, it is necessary to keep the wall impedance at a suitable value as the mode coupling between TE₀₁ and "i" mode becomes small.

ance separates from the metallic wall, the larger the mode couplings between TE₀₁ and elliptical TE₂₁ and TM₂₁ mode. Therefore, it is necessary to keep the wall impedance at a suitable value as the mode coupling between TE₀₁ and "i" mode becomes small.

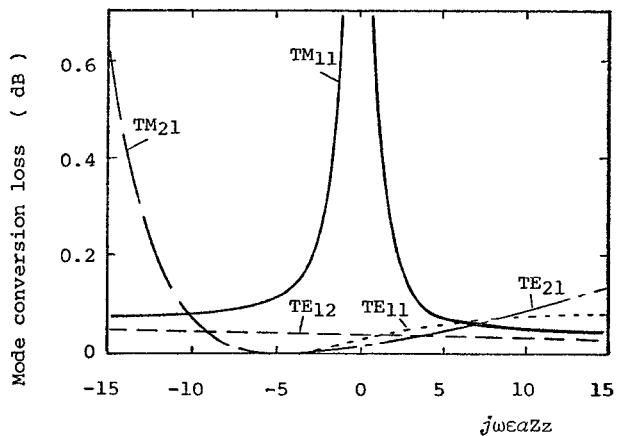


Figure 4. Typical mode conversion loss versus " $j\omega\epsilon_{aZZ}$ " where "a" is 7mm., "f" is 90GHz, "l" is 1.8m., "R" is 1.0m. and elliptical deformation " δ " is 0.5%.

Total Attenuation

Attenuation of curved flexible helix waveguide is calculated as the sum of $\Gamma_i(l)$ and heat loss. The loss factors of the flexible helix waveguides are composed of heat loss, mode conversion loss caused by the curvature and the elliptical deformation. As these three loss factors are dependent each other, the optimum wall structure must be designed to reduce the sum of these loss factors.

Figure 5 shows the total attenuation for TE₀₁ mode versus waveguide radius where curvature radius of one meter and a 90 degree bend. From this figure, optimum waveguide radius is determined. Here we have a design for extremely low loss flexible helix waveguides.

Figure 5. Total attenuation for TE₀₁ mode versus waveguide radius where "t" is 0.25mm. and frequency as a parameter.

Experimental Results

Measurement of Axial Wall Impedance

The measurement method of the axial wall impedance of a flexible helix waveguide is shown in Figure 6. Its principle is an extension of the well known single pulse method. One of "i" modes is superposed with a circular TE₀₁ mode, and they are guided into a sample of the flexible helix waveguide. The movable shutter which is remotely controlled from the measuring end is moved along the axis. From the measurement of the beat wavelength which caused by mode conversion-reconversion between TE₀₁ and "i" mode, the propagation constant of "i" mode in the flexible helix waveguides were obtained.

Measurement results which are dotted in Figure 3 are in agreement with the calculated results.

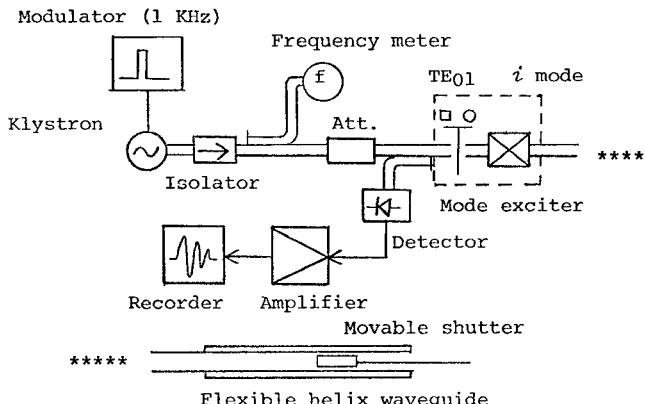


Figure 6. Axial wall impedance measurement setup.

Transmission Characteristics

Figure 7 shows the calculated and measured results of the low loss flexible helix waveguides with the optimum wall structure for different inner diameters.

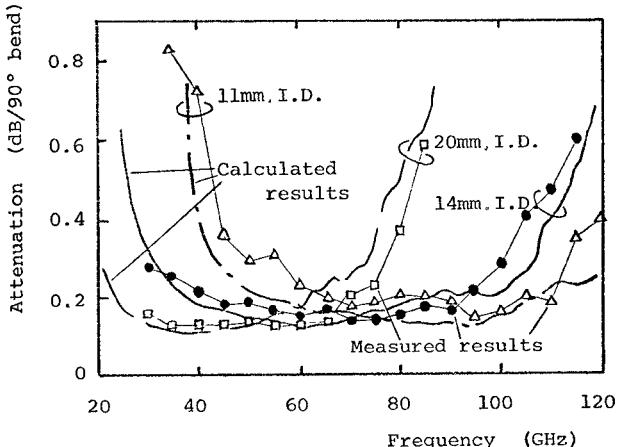


Figure 7. Calculated and measured results of the low loss flexible helix waveguide with the optimum wall structure, inner diameter as a parameter.

Measurement results are in agreement with the calculated value, assuming that the mode coupling coefficient "C_i" is "0.7C_i". Mode conversion losses caused by curvature and elliptical deformation are below 0.25dB.

Table 1 shows the optimum structure and bending condition of the typical low loss flexible helix waveguides.

Waveguide inner diameter (mm.)	20	14	11
Bend radius (m.)	1.0	0.7	0.5
Waveguide length (m.)	1.8	1.3	1.0
Bend angle (deg.)		90	
Thickness of matching layer (mm.)	0.35	0.25	0.25
Attenuation (dB)	less than 0.25dB		
Freq. band (GHz)	(30)-75	35-100	50-110

Table 1. The optimum structure and bending condition of the low loss flexible helix waveguides.

Mechanical Strength

After a 50 times temperature cycling test of -20°C and +60°C, and after a 50 times bend test with one meter radius bend over a 90 degree bend, the electrical and the mechanical characteristics were very stable.

Conclusion

We have achieved the theoretical and experimental investigation on small inner diameter millimetric flexible helix waveguides, and they have realized the low loss transmission characteristics. Measurement results of attenuation and wall impedance are in agreement with the theoretical value. Total attenuation for the TE₀₁ mode is below 0.25dB for a wide millimeter wave range. The attenuation is lower than that of a single corner waveguide which has been generally used at the severe curved segment of waveguides. Moreover, there is no generation of unwanted higher order TE_{0n} modes. These low loss flexible helix waveguide will be useful for the millimetric waveguide communication systems.

References

- (1) K. Hashimoto et al., "Equivalent-Circuit Representation of Circular Corner Waveguide for Millimeter Communication Systems.", Paper of the Technical Group on Micro-Wave, I.E.C.E., Japan, MW74-11, 1974.
- (2) H. G. Unger, "Normal Modes and Mode Conversion in Helix Waveguide.", Bell Syst. Techn. J., 40, 1961, p.255.
- (3) H. G. Unger, "Helix Waveguide Theory and Application.", Bell Syst. Techn. J., 37, 1958, p.1599.
- (4) H. G. Unger, "Noncylindrical Helix Waveguide.", Bell Syst. Techn. J., 40, 1961, p.233.
- (5) K. Inada et al., "Optimum Structure and Bend Characteristics of Small Diameter Flexible Helix Waveguide.", J. Inst. Electronics Commun. Eng. Japan, Vol. 58-B, No.4, 1975.